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HYPERBOLICITY OF STEADY-STATE EQUATIONS

OF GAS SHEAR FLOWS IN A THIN LAYER

UDC 533.6.011 + 517.948.34A. K. Khe

The steady-state three-dimensional motion of an ideal gas in a thin layer of variable height is con-
sidered. In the long-wave approximation, the equations of gas dynamics reduce to a system of inte-
grodifferential equations. The generalized characteristics and hyperbolicity conditions of the obtained
system are found.
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1. System of Equations. We consider the steady-state three-dimensional motion of a non-heat-conducting
inviscid gas. The system of gas-dynamic equations has the form

uux + vuy + wuz + ρ−1px = 0,

uvx + vvy + wvz + ρ−1py = 0, uwx + vwy + wwz + ρ−1pz = 0,

(ρu)x + (ρv)y + (ρw)z = 0, uSx + vSy + wSz = 0.

Here u, v, and w are the velocity components, p is the pressure, ρ is the density, and S is the specific entropy. The
system is closed by the equation of state

ρ = R(p, S).

Let us consider the gas flow between two rigid walls z = 0 and z = h(x, y), on which the nonpenetration
boundary conditions are satisfied:

w
∣∣∣
z=0

= 0, w
∣∣∣
z=h

= uhx + vhy.

Let L0 and U0 be the characteristic horizontal scale and flow velocity, H0 is the vertical scale, and R0 and
S0 are the characteristic density and entropy.

The substitution of variables

x = L0x
′, y = L0y

′, z = H0z
′,

u = U0u
′, v = U0v

′, w = (U0H0/L0)w′, ρ = R0ρ
′, p = R0U

2
0 p

′, S = S0S
′

changes only the third momentum equation, which takes the following form (primes are omitted):

ε2(uwx + vwy + wwz) + ρ−1pz = 0

(ε = H0/L0). The long-wave approximation is related to the assumption that H0 � L0 (ε � 1). In the limiting
case ε→ 0, the pressure does not depend on the vertical coordinate:

p = p(x, y).
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The remaining equations are simplified by introducing the Lagrangian coordinate λ ∈ [0, 1], which
parametrizes the material surfaces from z = 0 to z = h [1]. Let us introduce the variable λ by the formula

z = Φ(x, y, λ), λ ∈ [0, 1],

where the function Φ is a solution of the initial-boundary-value problem

u(x, y,Φ)Φx + v(x, y,Φ)Φy = w(x, y,Φ),

Φ
∣∣∣
x=x0

= Φ0(y, λ), Φ
∣∣∣
λ=0

= 0, Φ
∣∣∣
λ=1

= h.

It is assumed that u(x0, y,Φ0) 6= 0 and Φ0

∣∣∣
λ=0

= 0, Φ0

∣∣∣
λ=1

= h.
Then, the long-wave equations become

uux + vuy + ρ−1px = 0, uvx + vvy + ρ−1py = 0,

pλ = 0, (uH)x + (vH)y = 0, uSx + vSy = 0,

where the new function H(x, y, λ) = ρΦλ is introduced.

Taking into account that h =

1∫
0

Φλ dλ, we obtain the relation between the pressure and the functions H

and S:

h(x, y) =

1∫
0

H

R(p, S)
dλ.

Differentiating this relation, we have

∇p =
( 1∫

0

HRp

R2
dλ

)−1( 1∫
0

∇H
R

dλ−
1∫

0

HRS

R2
∇S dλ−∇h

)
.

Here the operator ∇ is calculated from the variables x and y.
As a result, we arrive at the integrodifferential system of equations

AUx +BUy = G, (1.1)

where U = (u, v,H, S)t, G = (σhx, σhy, 0, 0)t, σ =
( 1∫

0

R−2HRp dλ
)−1

, and A and B are linear operators. The

operators A and B act on the trial function ϕ = (ϕ1, ϕ2, ϕ3, ϕ4)t by the rules

Aϕ =
(
uϕ1 +

σ

R

1∫
0

ϕ3

R
dλ− σ

R

1∫
0

HRS

R2
ϕ4 dλ, uϕ2, uϕ3 +Hϕ1, uϕ4

)t
,

Bϕ =
(
vϕ1, vϕ2 +

σ

R

1∫
0

ϕ3

R
dλ− σ

R

1∫
0

HRS

R2
ϕ4 dλ, vϕ3 +Hϕ2, vϕ4

)t
.

The propagation of steady-state perturbations in a plane–parallel gas shear flow in a channel of variable
cross section was studied in [2], simple waves in three-dimensional flows of a homogeneous fluid were studied in [3],
and three-dimensional steady-state simple waves in barotropic fluid flows in [4].

2. Characteristics and Eigenfunctionals. In [1], the concept of the hyperbolicity of systems of partial
differential equations is extended to the case of differential equations with operator coefficients.

Let B be a Banach space of the vector functions ϕ(λ) and the operators A and B act in the space B. Then,
the vector (ξ, η) on the plane (x, y) is called characteristic if the pair (ξ, η) is a solution of the eigenvalue problem

〈F , (ξA+ ηB)ϕ〉 = 0, (2.1)
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where F ∈ B′ is the desired eigenvector functional; ϕ ∈ B is an arbitrary trial vector function. Problem (2.1) is
solved for each fixed point (x, y).

A curve on the plane (x, y) is called a characteristic of Eq. (1.1) if the direction of the normal to it at each
point is parallel to the direction (ξ, η). The equality

〈F , AUx +BUy〉 = 〈F ,G〉 (2.2)

is called the relation on the characteristic.
System (1.1) is called a hyperbolic system [1] if problem (2.1) has only real roots ξ and η and the set of

relations on the characteristics (2.2) is equivalent to system (1.1).
Next, we consider Eq. (2.1) at a certain fixed point (x, y). By virtue of the homogeneity of the equation for

ξ, and η, it is possible to assume that ξ2 + η2 = 1 and to introduce the new unknown γ (the angle between the
tangent to the characteristic and the x axis):

ξ = − sin γ, η = cos γ.

In addition, we make the change of variables on the hodograph plane

u = q cosϑ, v = q sinϑ.

By virtue of the independence of the trial functions ϕj , Eq. (2.1) is split into the following system of four
equations:

〈F1, ϕ1q sin (ϑ− γ)〉 − sin γ 〈F3,Hϕ1〉 = 0, 〈F2, ϕ2q sin (ϑ− γ)〉+ cos γ 〈F3,Hϕ2〉 = 0,

〈F3, ϕ3q sin (ϑ− γ)〉+ σ

1∫
0

ϕ3

R
dλ

〈
− sin γ F1 + cos γ F2,

1
R

〉
= 0,

〈F4, ϕ4q sin (ϑ− γ)〉 − σ

1∫
0

HRS

R2
ϕ4 dλ

〈
− sin γ F1 + cos γ F2,

1
R

〉
= 0.

We consider the case where γ 6= ϑ(λ) +mπ for all λ ∈ [0, 1] and m ∈ Z. In this case, the trial function ϕ

can be replaced by ϕ/(q sin (ϑ− γ)). As a result, we obtain the following expression for the functionals:

〈F ,ϕ〉 =

1∫
0

H(−ϕ1 sin γ + ϕ2 cos γ)
Rq2 sin2(ϑ− γ)

dλ−
1∫

0

ϕ3

Rq sin (ϑ− γ)
dλ+

1∫
0

HRS

R2

ϕ4

q sin (ϑ− γ)
dλ,

where the corresponding eigenvalue γ should satisfy the secular equation

χ(γ) ≡ 1− σ

1∫
0

H

R2q2 sin2(ϑ− γ)
dλ = 0. (2.3)

It is easy to verify that if γ = ϑν ≡ ϑ
∣∣∣
λ=ν

, the functionals

〈F 1ν ,ϕ〉 = ϕν
1 cosϑν + ϕν

2 sinϑν ,

〈F 2ν ,ϕ〉 = −(Rϕ1)′
∣∣∣
λ=ν

sinϑν + (Rϕ2)′
∣∣∣
λ=ν

cosϑν − R

qϑ′ϕ3
H

∣∣∣
λ=ν

, 〈F 3ν ,ϕ〉 = ϕ4,

〈F 4ν ,ϕ〉 = 〈F ν
0 ,−ϕ1 sinϑν + ϕ2 cosϑν〉 − σ

1∫
0

ϕ3

Rq sin (ϑ− ϑν)
dλ+ σ

1∫
0

HRS

R2

ϕ4

q sin (ϑ− ϑν)
dλ

[
〈F ν

0 , ϕ〉 = Rνϕν + σ

1∫
0

H(Rϕ−Rνϕν)
R2q2 sin2(ϑ− ϑν)

dλ
]

are eigenfunctionals. Here and below, the prime denotes partial derivatives with respect to λ and the superscript ν
denotes the value of the function for λ = ν.
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3. Condition for the Absence of Complex Roots. Thus, it is shown that the solutions of problem
(2.1) is a set of values of ϑν and γk, where ϑν = ϑ

∣∣∣
λ=ν

[ν ∈ (0, 1)] and γk is a set of solutions (generally speaking,

complex) of Eq. (2.3) that do not lie on the segment [minλ ϑ,maxλ ϑ]. We now find the conditions under which
Eq. (2.3) has only real roots γ.

We consider only the case where the function ϑ(λ) is monotonic. For definiteness, let ∂ϑ/∂λ > 0. We
designate ϑ0 = ϑ

∣∣∣
λ=0

and ϑ1 = ϑ
∣∣∣
λ=1

, where ϑ1 − ϑ0 < π [otherwise, the function χ(γ) is not defined on the real

axis].
Lemma 1. For real γ, the function χ(γ) has the following properties:
1) χ(γ) is periodic with period π;
2) if σH/(R2q2ϑ′) 6= 0 for λ = 0 and λ = 1, then χ→ −∞ for γ → ϑ1+0 and γ → ϑ2−0, where ϑ2 = ϑ0+π;
3) χ(γ) is convex (on the period).
Indeed, the function sin2 is π-periodic; therefore property 1 is valid.
We note that if the values of γ differ by a magnitude that is a multiple of π, they determine the same

characteristic normal.
Property 2 follows from the fact that the function χ(γ) can be written as

χ(γ) = 1 +
σH

R2q2ϑ′
cot (ϑ− γ)

∣∣∣1
λ=0

− σ

1∫
0

( H

R2q2ϑ′

)′
ϑ′ cot (ϑ− γ) dλ.

Next, the second derivative has the form

χ′′(γ) = −2σ

1∫
0

H

R2q2
1 + 2 cos2(ϑ− γ)

sin4(ϑ− γ)
dλ < 0,

whence follows property 3 of Lemma 1. The function χ(γ) is plotted schematically in Fig. 1. Lemma 1 leads to the
following lemma.

Lemma 2. In the interval (ϑ1, ϑ2), the function χ(γ) reaches the single maximum χ(γ∗). In this case, if

χ(γ∗) > 0, (3.1)

then the secular equation (2.3) has two different (with accuracy up to the period) real roots γ1 and γ2. At the points
γ1 and γ2, the following inequalities hold:

χ′(γ1) > 0, χ′(γ2) < 0. (3.2)

If χ(γ∗) < 0, then Eq. (2.3) has no real roots.
Inequalities (3.2) follow from the fact that χ′′ < 0.
We now consider the function χ(γ) for the complex values of the variable γ. Because of the periodicity of

χ(γ), it suffices to consider the strip Re γ ∈ (γ∗ − π, γ∗) (Re denotes the real part of the complex number). We
make the change of variables in the integral of the function χ (2.3):
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t = e2iϑ, k = e2iγ . (3.3)

Then, on the arc Γ of the unit circle, t changes from t0 = e2iϑ0
to t1 = e2iϑ1

, and k ∈ C \ Γ. The sides of the strip
Re γ = γ∗ − π and Re γ = γ∗ are mapped onto the sides of the cut along the ray arg k = 2iγ∗, which can be sewed
by virtue of the periodicity of the function χ(γ). The function χ(γ) can be brought to the form

χ(k) = 1− 2iσtH
R2q2ϑ′(k − t)

∣∣∣t1
t0
− σ

∫
Γ

( H

R2q2ϑ′

)′ 1
ϑ′

dt

t− k
.

We assume that the condition χ(γ∗) > 0 is satisfied, i.e., that two real roots γ0 ∈ (γ∗−π, ϑ0) and γ1 ∈ (ϑ1, γ∗)
exist. These roots correspond to the points k0 = e2iγ0

and k1 = e2iγ1
located on a unit circle of the complex plane.

We also note that the complex roots of the function χ(γ) correspond to the roots of the function χ(k) that do not
lie on the unit circle.

Let us consider a contour that consists of the following elements: the inner and outer sides of the cut along Γ,
circles of small radius with centers at the points t0 and t1, and a circle of large radius with center at the coordinate
origin (Fig. 2).

At the points k = t0 and k = t1, the function χ(k) has singularities of the type of a simple pole, χ → 1 as
k →∞; therefore by virtue of the argument principle, the equation χ(k) = 0 has only two roots k0 and k1, if

χ+ 6= 0, ∆ argχ+/χ− = 0 along Γ. (3.4)

4. Completeness of the System of Eigenfunctionals. Let conditions (3.1) and (3.4) and the equation
〈F j ,ϕ〉 = 〈F lν ,ϕ〉 = 0 [j = 1, 2; l = 1, 2, 3, 4; ν ∈ (0, 1)] be satisfied. We prove that ϕ ≡ 0.

From the equation 〈F 3ν ,ϕ〉 = 0, we obtain ϕ4 ≡ 0.
Let us introduce the function ψ = −ϕ1 sinϑ + ϕ2 cosϑ. From the equation 〈F 1ν ,ϕ〉 = 0 it follows that

ϕ1 = −ψ sinϑ and ϕ2 = ψ cosϑ, and from the equation 〈F 2ν ,ϕ〉 = 0 we obtain ϕ3 = H(Rψ)′/(Rqϑ′).
Then, the equation 〈F 4ν ,ϕ〉 = 0 can be brought to the form

Rνψν + σ

1∫
0

H(Rψ cos(ϑ− ϑν)−Rνψν)
R2q2 sin2(ϑ− ϑν)

dλ− σ

1∫
0

H

R2q2ϑ′
(Rψ)′

sin (ϑ− ϑν)
dλ = 0.

It is easy to verify that this equation is satisfied for the functions ψ = 1/(R sin (ϑ− γj)) (j = 1, 2). We set

ψ = ψ0 +
C1

R sin (ϑ− γ1)
+

C2

R sin (ϑ− γ2)
, (4.1)

where the constants C1 and C2 are chosen so that ψ0 = 0 for λ = 0, 1. Then, the equation for ψ0 can be brought
to the form(

1− σ

1∫
0

( H

R2q2ϑ′

)′
cot (ϑ− ϑ′) dλ+

σH cot (ϑ− ϑν)
R2q2ϑ′

∣∣∣1
λ=0

)
Rνψν

0 + σ

1∫
0

( H

R2q2ϑ′

)′ Rψ0

sin (ϑ− ϑν)
dλ = 0.

Using the change of variables (3.3), we arrive at the equation(
1− σ

∫
Γ

( H

R2q2ϑ′

)′ 1
ϑ′

dt

t− tν
+

2iσtH
R2q2ϑ′

1
t− tν

∣∣∣t1
t0

)Rνψν
0√

tν
+ σ

∫
Γ

( H

R2q2ϑ′

)′ 1
ϑ′
Rψ0/

√
t

t− tν
dt = 0. (4.2)
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Equation (4.2) is a singular integral equation which is adjoint to the secular equation and has a Cauchy
kernel for the function Rψ0/

√
t.

We introduce the piecewise-analytical function

Φ(z) =
σ

2πi

∫
Γ

( H

R2q2ϑ′

)′ 1
ϑ′
Rψ0/

√
t

t− z
dt = 0,

which is defined on a complex plane with a cut along Γ. According to the properties of the Cauchy integral (4.2),
the function Φ(z) is bounded near the ends of the contour Γ and vanishes at infinity. By virtue of the Sokhotsky–
Plemelj formulas and the properties of the Cauchy integral [5], the integral equation is transformed to the conjugation
problem for the function Φ(z):

Φ+(tν) = G(tν)Φ−(tν).

Here G(tν) = χ+(tν)/χ−(tν) is the coefficient of the conjugation problem. By virtue of conditions (3.4), the index
of the conjugation problem is equal to zero; therefore, according to the general theory [5], the problem has only a
trivial solution. From this, using the Sokhotsky–Plemelj formulas, we obtain ψ0 = 0.

We note that 〈F j , 1/(R sin (ϑ− γk))〉 = 0 for j 6= k (j, k = 1, 2); therefore, from (4.1) it follows that Cj = 0
because 〈

F j ,
1

R sin (ϑ− γj)

〉
= χ′(γj) 6= 0.

The aforesaid leads to the following statement.
Statement 1. If conditions (3.1) and (3.4) are satisfied, Eqs. (1.1) are hyperbolic.
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